Index
EVO Operator
TODO Operator
Name | docs |
---|---|
Pooling | pool |
1 Hardware Level Optimize
1.1 Support CPU
Name | ISA | Company |
---|---|---|
AVX | amd64 | Intel |
AMX | amd64 | Intel |
NEON | aarch64 | Arm |
RVV | riscv | UCB |
1.2 Support GPU
Name | ISA | Company |
---|---|---|
CUDA | ||
Vulkan | ||
OpenCL | ||
Metal |
1.3 Support NPU
Name | ISA | Company |
---|---|---|
CoreML | ||
HIAI | ||
NNAPI |
2 Hign Perfermance Operator Lib
Name | ISA | Company |
---|---|---|
cuDNN | ||
MKLDNN |
3 onnx operator
total 162:
Applied | Name | Detail |
---|---|---|
Abs | Support Type: int8 |
|
Acos | ||
Acosh | ||
Add | ||
And | ||
ArgMax | ||
ArgMin | ||
Asin | ||
Asinh | ||
Atan | ||
Atanh | ||
AveragePool | ||
BatchNormalization | ||
BitShift | ||
Cast | ||
Ceil | ||
Clip | ||
Compress | ||
Concat | ||
ConcatFromSequence | ||
Constant | ||
ConstantOfShape | ||
Conv | ||
ConvInteger | ||
ConvTranspose | ||
Cos | ||
Cosh | ||
CumSum | ||
DepthToSpace | ||
DequantizeLinear | ||
Det | ||
Div | ||
Dropout | ||
Einsum | ||
Elu | ||
Equal | ||
Erf | ||
Exp | ||
Expand | ||
EyeLike | ||
Flatten | ||
Floor | ||
GRU | ||
Gather | ||
GatherElements | ||
GatherND | ||
Gemm | ||
GlobalAveragePool | ||
GlobalLpPool | ||
GlobalMaxPool | ||
Greater | ||
HardSigmoid | ||
Hardmax | ||
Identity | ||
If | ||
InstanceNormalization | ||
IsInf | ||
IsNaN | ||
LRN | ||
LSTM | ||
LeakyRelu | ||
Less | ||
Log | ||
Loop | ||
LpNormalization | ||
LpPool | ||
MatMul | ||
MatMulInteger | ||
Max | ||
MaxPool | ||
MaxRoiPool | ||
MaxUnpool | ||
Mean | ||
Min | ||
Mod | ||
Mul | ||
Multinomial | ||
Neg | ||
NonMaxSuppression | ||
NonZero | ||
Not | ||
OneHot | ||
Or | ||
PRelu | ||
Pad | ||
Pow | ||
QLinearConv | ||
QLinearMatMul | ||
QuantizeLinear | ||
RNN | ||
RandomNormal | ||
RandomNormalLike | ||
RandomUniform | ||
RandomUniformLike | ||
Reciprocal | ||
ReduceL1 | ||
ReduceL2 | ||
ReduceLogSum | ||
ReduceLogSumExp | ||
ReduceMax | ||
ReduceMean | ||
ReduceMin | ||
ReduceProd | ||
ReduceSum | ||
ReduceSumSquare | ||
Relu | ||
Reshape | ||
Resize | ||
ReverseSequence | ||
RoiAlign | ||
Round | ||
Scan | ||
Scatter | ||
ScatterElements | ||
ScatterND | ||
Selu | ||
SequenceAt | ||
SequenceConstruct | ||
SequenceEmpty | ||
SequenceErase | ||
SequenceInsert | ||
SequenceLength | ||
Shape | ||
Shrink | ||
Sigmoid | ||
Sign | ||
Sin | ||
Sinh | ||
Size | ||
Slice | ||
Softplus | ||
Softsign | ||
SpaceToDepth | ||
Split | ||
SplitToSequence | ||
Sqrt | ||
Squeeze | ||
StringNormalizer | ||
Sub | ||
Sum | ||
Tan | ||
Tanh | ||
TfIdfVectorizer | ||
ThresholdedRelu | ||
Tile | ||
TopK | ||
Transpose | ||
Unique | ||
Unsqueeze | ||
Upsample | ||
Where | ||
Xor | ||
Celu | ||
DynamicQuantizeLinear | ||
GreaterOrEqual | ||
LessOrEqual | ||
LogSoftmax | ||
MeanVarianceNormalization | ||
NegativeLogLikelihoodLoss | ||
Range | ||
Softmax | ||
SoftmaxCrossEntropyLoss |
4 learnable parameters
-
Conv:
- kernel: [1, 1, K_h, K_w]
- bias : []
- params: (K_h * K_w * C_in + 0/1) * C_out
- FLOPS : (K_h * K_w * C_in + 0/1) * C_out * (H_out * W_out)
- FLOPs : 2 *
-
FC:
- weight: []
- bias : []
- params: (C_in + 0/1) * C_out
- FLOPS : (C_in + 0/1) * C_out
- FLOPs :
-
BN:
- scale:
- shift:
-
Activation:
- PRelu:
5 hyper parameters
- learning rate
- batch size
- iterations
- epochs
data_size = 1200 batch_size = 100 epochs = 5 update_count = (1200 / 100) * 5 = 60